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Abstract
Observational studies assessing causal or non-causal relationships between an explanatory measure and an
outcome can be complicated by hosts of confounding measures. Large numbers of confounders can lead to
several biases in conventional regression based estimation. Inference is more easily conducted if we reduce
the number of confounders to a more manageable number. We discuss use of sufficient dimension reduction
(SDR) summaries in estimating covariate balanced comparisons among multiple populations. SDR theory
is related to the dimension reduction considered in regression theory. SDR summaries share much with
sufficient statistics and encompass propensities. A specific type of SDR summary can wholly replace the
original covariates with no loss of information or efficiency. Estimators with minimal expected loss can be
based on these SDR summaries rather than all of the covariates.
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1. Introduction

We consider estimating differences in the conditional distribution of an outcome Y among k popula-
tions, P1, P2, . . . , Pk. From each population, Pz, a sample of size nz is obtained and for each sampled
unit the real-valued response variable Y and p common real-valued covariates X = (X1, X2, . . . , Xp)
are measured. Unit population membership is measured in Z, taking values in {1, . . . , k}. We as-
sume the values (Y, X) among different units are independent and their distribution may differ across
populations. For convenience, we use the notation fY,X(·, · |Z = j), fX(· |Z = j) and fY (· |Z = j)
to denote the joint and marginal densities or probability densities of X and Y in the jth population,
even though Z may not be a random variable. We let fY (y |Z = j, X = x) represent the conditional
distribution of Y given X = x in population Pj .

In observational settings the specification of meaningful measures of differences in the conditional
distribution of Y among the different populations can be complicated by the need to consider
large numbers of potential confounding covariates X. Balanced outcome comparisons are critical
to inference in these situations. For an outcome Y , set of covariates X, and grouping measure
Z ∈ {1, . . . , k}, a covariate balanced comparison takes the form

θg =
∫
F(Y, f(y |Z = 1, X = x), . . . , f(y |Z = k, X = x))g(x)dx (1)

for a known functional F and a weighting density g. We assume

F(Y, f(y |Z = 1, X = x), . . . , f(y |Z = k,X = x))

depends on X only through the conditional density functions for Y given Z and X. In practice,
the weighting function g is typically a weighted combination of the conditional distributions of the
covariates within the different populations,

∑
j wjfX(x |Z = j), such as the marginal distribution

of X. See Nelson and Noorbaloochi (2009) for further discussion of these weighting densities.
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An example of a balanced comparison is the averaged difference in expectations
∫ { ∫

y
(
fY (y |Z = 1, X = x)− fY (y |Z = 2, X = x)

)
dy

}
fX(x)dx

frequently discussed in propensity theory. A further example, for dichotomous Y and Z taking
values in {1, 2}, is given by the covariate balanced average odds ratio

∫
fY (1 |Z = 1, X = x)
fY (2 |Z = 1, X = x)

fY (2 |Z = 2, X = x)
fY (1 |Z = 2, X = x)

fX(x |Z = 1)dx

where we average the conditional odds ratios with respect to the marginal distribution of the covari-
ates in one of the populations.

When X has large dimension, the direct estimation of such θg typically requires implementation
of a large dimensional regression analysis or some similar analysis. For example, to estimate balanced
difference in expectations we would need to estimate the regression functions E (Y |Z = i, X = x)
and to estimate balanced odds ratios we would need to estimate fY (1 |Z = i, X = x)/(1−fY (1 |Z =
i, X = x)). Often direct estimation of the balanced comparisons will be based upon parameters
estimated in these large dimensional regression analyses. When several potential predictor measures
are available, the estimation of these parameters suffers from several well-known problems.

With larger numbers of predictors we may need larger sample sizes to estimate parameters with
precision, this issue is related to the curse of dimensionality. If the underlying regression function
is of low dimension then we risk overfitting using all of the predictors. Without accurate prior
knowledge of the form of the regression function, we need to implement a model selection process
to avoid overfitting. Several standard model identification processes can result in upwardly biased
parameters estimates and test statistics. See Harrell (2001) for a broad overview of the difficulties
in model selection and identification processes in regression analysis. These issues can be greatly
diminished, and inference more easily conducted, if we wisely replace the original covariates with a
new, reduced, set of covariates using a summary function T (X), T : Rp −→ Rd with d < p, hopefully
with d much less than p.

2. Dimension Reduction and Propensities

Rosenbaum and Rubin (1983) developed propensity theory to reduce covariate dimension in these
situations. Propensity theory focuses on estimation of causal effects and hence considers a potential
outcomes framework in which Yi is the outcome for an individual under treatment or intervention
condition Z = i. In the framework considered in the rest of this discussion we can think of the
outcome Y as a combination of these potential outcomes, Y =

∑
i Yi I(Z=i). The literature on

propensity theory tends to focus on bias control and unbiased estimation of causal effects relative to
estimation ignoring the covariates. However, one can view propensity theory solely as a dimension
reduction theory.

Essentially one assumption and one conditional independence property drive propensity the-
ory. The strong ignorability assumption drives the ability to conduct inference in an unconfounded
manner. This assumption stipulates the potential outcomes are independent of group membership
conditional on the set of covariates,

(Y1, . . . , Yk) ⊥ Z | X.

The conditional independence property satisfied by balancing scores T (X), defined by the property

Z ⊥ X | T (X),

essentially states that all of the information in X about the distribution of Z is contained in T (X).
Balancing scores with linear dimension greater than that of X are of little interest. When X has



dimension greater than k the smallest or coarsest such balancing score is the propensity vector given
by, say, (

Prob(Z = 1 |X), . . . , P rob(Z = k − 1 |X)
)
.

Similar to minimal sufficient statistics, the propensity score is the smallest such balancing function
in that the propensity score is a function of any other balancing score.

Combining this conditional independence property with the strong ignorability assumption leads
to dimension reduction in the X, in that unconfounded inference can now be implemented using the
smaller set of covariates T(X), as (Y1, . . . , Yk) ⊥ Z | T (X). We can use these balancing scores in
place of the original set of covariates in forming estimates of the causal effects. In this sense then
propensity theory is a theory of covariate dimension reduction.

While propensity theory reduces the covariates to a smaller dimension, estimation using these
dimension reduction summaries can be less precise than estimation using the full set of covariates X
as information in X about Y can be lost when X is replaced by the propensities. A natural question
that then arises is whether we can reduce the dimension of the covariates and not suffer as much
potential loss of precision. The conditional independence condition defining the balancing scores
mimics sufficiency. In essence all of the information in X about the distribution of Z is contained in
the balancing score. We use this analogy to sufficiency to develop a covariate dimension reduction
theory for the estimation of covariate balanced comparisons among multiple populations that retains
more of the information the covariates contain about both the outcome and population membership.

3. Sufficient Dimension Reduction Summaries for Discrete Outcomes

Consider a response variable Y taking values in {1, . . . , m}. We assume that if fX(x |Z = j, Y =
i) > 0 for some i and j then fX(x |Z = j, Y = i) > 0 for all i and j. The following results use a
generalization of sufficiency to identify sufficient dimension reduction (SDR) summary functions of
X which contain all of the information in X about the distribution of Y and Z. If Z is not random
these summaries contain all of the information about the distribution of Y among the different levels
of Z. We start with the following definition.

Definition 1. T (X), with T : Rp → Rd and d ≤ p, is an X-sufficient summary relative to (Y, Z)
if, for all z and y,

fX(x |Z = z, Y = y) = fX(x |T (X) = T (x)) fT (T (x) |Z = z, Y = y).

T (X) is an X-sufficient summary relative to (Y,Z) if and only if X is conditionally independent of
(Y, Z) given T . For such T ,

fY (y |Z, X) = fY (y |Z, T (X)).

Note then that T (X) captures all of the information in X regarding the association of Y and Z.
The following theorem characterizes these sufficient summaries.

Theorem 1. The conditional density ratio vector

~L(X) =
(fX(X |Z = 1, Y = 2)

fX(X |Z = 1, Y = 1)
, . . . ,

fX(X |Z = i, Y = j)
fX(X |Z = 1, Y = 1)

, . . . ,
fX(X |Z = k, Y = m)
fX(X |Z = 1, Y = 1)

)

satisfies
fX(x |Z, Y ) = fX(x | ~L(X) = ~L(x)) fT (~L(x) |Z, Y ).

In addition, any summary function T satisfying

fX(x |Z, Y ) = fX(x |T (X) = T (x)) fT (T (x) |Z, Y )

is finer than ~L(X) in the sense that ~L(X) = h(T (X)) for some function h.



A proof of the theorem is outlined in the Appendix. Now consider the balanced comparison of
outcomes, θg, discussed above.

Theorem 2. Assume, for θg is as specified in Equation (1), that g(x) =
∑k

j=1 wjfX(x |Z = j) for
a set of weights w. Let T (X) be an SDR summary relative to (Y, Z), then

θg =
∫
F(Y, Z, f(y |Z = 1, T (X) = t), . . . , f(y |Z = k, T (X) = t))gT (t)dt

for gT (t) =
∑k

j=1 wjfT (t |Z = j).

The proof of this Theorem is trivial given the assumption that F depends on X only through the
conditional density functions f(y |Z, X). We can wholly replace the covariates X with the summary
T (X) in the formulation and, hence, the estimation of θg. Inference regarding the association between
Z and Y , or how the distribution of Y changes with Z, can be based on the conditional distributions
of Y given Z and the (km − 1) dimensional vector of conditional density ratios with no loss of
information. If both Z and Y are random then the conditional density ratio vector is equivalent to
the vector of conditional probabilities

~eY Z(X) =
(
P (Z = 1, Y = 2 |X), . . . , P (Z = 1, Y = k |X),

P (Z = 2, Y = 1 |X), . . . , P (Z = k, Y = m |X)
)
.

This is simply a propensity vector for both Y and Z. In summary, for discrete Z and Y there is an
SDR summary T (X) of nominal linear dimension km−1 given by these conditional density ratios for
which f(y |Z, X) = f(y |Z, T (X)). We now turn attention to sufficient summaries for continuous
Y .

4. Sufficient Dimension Reduction Summaries for General Outcomes

More generally, consider a response measure Y ∈ Y. Here then Y may be continuous. Let G be
a family of parametric models for the conditional distribution of X given (Y, Z) which is indexed
by η ∈ Θ. Here X-sufficient summaries can be defined as in Noorbaloochi & Nelson (2008). Let
Θ, Y,X denote the parameter space, response space, and covariate space, respectively. We assume
fη(x |Y = y, Z = j) > 0 for all x ∈ X , y ∈ Y, j ∈ {1, . . . , k}, and η ∈ Θ. For this situation we
define sufficient summaries as follows.

Definition 2. The summary S(X), for the function S(x) = (S1(x), S2(x), . . . , Sd(x)) mapping X
onto functions from Θ⊗ {1, . . . , k} ⊗ Y to Rd, d < p, is an X-sufficient summary relative to (Y, Z)
if, for all η ∈ Θ,

fη(x |Z, Y ) = fη(x |S(X) = S(x)) fη(S(x) |Z, Y )

for all x.

If S(X) is an X-sufficient summary then X ⊥ (Y, Z) |S(X). We can again characterize these
sufficient summaries in terms of density ratios.

Theorem 3. Let y0 be a fixed element of Y. Consider the function-valued summary

T (X) =
( fη(X |Z = 1, Y = y)

fη(X |Z = 1, Y = y0)
, . . . ,

fη(X |Z = k, Y = y)
fη(X |Z = 1, Y = y0)

)
,

a random function mapping the covariate space X onto functions on Θ⊗{1, . . . , k}⊗Y of the form
Tx(η, j, y) = fη(x |Z = j, Y = y)/fη(x |Z = 1, Y = y0). Assume k ≤ p. The summary T then
satisfies

fη(x |Z, Y ) = fη(x |T (X) = T (x))fη(T (x) |Z, Y )

for all η.



If Y is categorical these results yield the sufficient summaries discussed in the previous section.
Furthermore, the results of Theorem 2 apply here as well. Noorbaloochi & Nelson (2008) discus-
sion X-sufficient summaries in Exponential families of distributions. For exponential families of
distributions we often can find simpler, convenient forms for these SDR summary functions

In summary, for categorical Y and for frequently considered families of conditional distributions
for a continuous Y given Z and X we can identify sufficient summaries satisfying f(y |Z, X) =
f(y |Z, T (X)). The smallest or minimal summaries are characterized by the ratios of the conditional
densities of X given Y and Z. For categorical Y and random Z these conditional density ratios can
be viewed as an expanded propensity function, that is, these ratios are equivalent to the vector of
conditional density functions for Y and Z given X.

We can reformulate the above arguments considering X-sufficient summaries with respect to
just Z. This leads to minimal dimension reduction summaries given by the conditional density
ratios for X given Z. These are equivalent to the propensity vector for Z. However, while using
this mathematical framework we can establish the results of Theorem 2 for averaged differences in
conditional expectations for Y given X and Z, for other estimands it is not clear whether such
wholesale replacement of X with the dimension reduction summary holds.

5. Reduced Expected Loss and Sufficient Dimension Reduction Summaries

If T (X) is an SDR summary relative to Y and Z then T (X) contains all the information in X about
the association between Y and Z. For T (x) = t,

fY (y |X = x, Z = j) = fY (y |T (X) = t, Z = j)

and the original regression functions are really regression functions of Z and T (X). We then can
replace the original regression problem with one involving T (X) rather than X. This is not the case
with sufficient summaries relative to just Z, such as propensity scores, which omit information in X
about Y . As long as Y is not independent of X given Z, X will contain information about Y beyond
the information contained in the propensity score and estimation using X can then be more precise.
Estimation using an SDR summary relative to both Y and Z to reduce the number of covariates
will not suffer from such deficiencies.

For simplicity assume Z is random. Let T (X) be the conditional density ratios for X relative to
Y and Z and let δ(Y,Z, X) be an estimator of some θ. Assume L(δ, θ) is a loss function which is
convex with respect to δ. Let φ(Y, Z, T ) = E (δ(Y, Z, X) |Y, Z, T ). A simple application of Jensen’s
inequality yields

E{L(φ, θ)} =
∫

L(φ(Y,Z, T (X), θ))fT (t |Z = z, Y = y)fY Z(y, z)dtdydz

≤
∫

L(δ(Y, Z, X), θ)fX(x |Z = z, Y = y)fY Z(y, z)dxdydz = E{L(δ, θ)}.

For example, for an unbiased predictor δ the predictor φ satisfies E (δ(Y, Z, X)) = E (φ(Y, Z, T ))
and, for squared error loss, has smaller loss as var(φ(Y, Z, T )) ≤ var(δ(Y,Z, X)). These results
are easily extended to estimators using observations from samples of independent, identically dis-
tributed elements by demonstrating that the conditional density ratios for the vector of observations
is equivalent to the vector of conditional density ratios for the independent elements. Hence for a
sample, (yi, zi, xi), i = 1, . . . , n it suffices to consider estimators that are functions solely of the
(yi, zi, T (xi)).

6. Final Comments

Sufficiency is a powerful statistical concept with direct interpretation as a dimension reduction the-
ory. Here, we used sufficiency to develop the concept of sufficient dimension reduction summaries



for use in the estimation of balanced comparisons of outcomes among multiple discrete populations.
For random polytomous Z, the conditional density ratios with respect to Z are invertible transfor-
mations of extended propensity scores. Conditional density ratios relative to (Y, Z) possess more
optimal properties with respect to expected loss and should offer better performance in estimating
outcome differences than the propensity vector.

The SDR summary results for continuous Y and polytomous Z are similar to the results presented
in Noorbaloochi & Nelson (2008) where we considered more general regression settings. There we
detailed how sufficient summaries, defined in a manner similar to that presented here, generalize
sliced inverse regression and related dimension reduction approaches considered in regression theory
(Li 1991, Cook & Weisberg 1991,Li, 1992). Briefly, the SDR summary property, f(Y, Z |X) =
f(Y, Z |T (X)) mirrors the standard assumption in these theories that f(Y |X) = f(Y |ΓX) for
some linear transformation Γ : Rp −→ Rd, d < p. Noorbaloochi and Nelson (2008) generalize this
condition to f(Y |X) = f(Y |S (X)) for an X-sufficient summary function S : Rp −→ Rd, d < p. We
see therefore that sufficiency and these sufficient summaries underly and unify important areas of
statistical theory.

7. Appendix

Proof Theorem 1. For all x′ ∈ {x′ : ~L(x′) = ~c} and for all i, j

fX(x′ |Z = i, Y = j) = cijfX(x′ |Z = 1, Y = 1)

and so fX(x |Z = i, Y = j, ~L(X) = ~c) is constant across all i, j. If T (X) is another summary that satisfies the
definition then, given T (x) = c, we have that

fX(x |Z = i, Y = j)∫
T (q)=c fX(q |Z = i, Y = j)dq

=
fX(x |Z = i′, Y = j′)∫

T (q)=c fX(q |Z = i′, Y = j′)dq

for all i, j, i′, j′. Hence

{
x |T (x) = c

}
⊆

{
x | ~L(x) =

(∫
T (q)=c fX(q |Z = 1, Y = 2)dq

∫
T (q)=c fX(q |Z = 1, Y = 1)dq

. . . ,

∫
T (q)=c fX(q |Z = k, Y = m)dq
∫

T (q)=c fX(q |Z = 1, Y = 1)dq

)}

and, therefore, T is finer than ~L.

Proof Theorem 3. Let y0 be a fixed element of Y. Consider the sets

L(gη) = {x′ : T (x′) = gη(y) = (gη,1(y), . . . , gη,k(y))}.
For any x′ ∈ L(gη) and for all η ∈ Ξ and all y ∈ Y

fη(x′ |Z = j, Y = y) = gη,j(y)fη(x′ |Z = 1, Y = y0).

So again the distribution of X given T (X) = L(gη) is constant across all values for Z and Y .

REFERENCES

Cook, R.D., Weisberg, S. (1991), ”Discussion of ’Sliced Inverse Regression’ by K.C. Li,” Journal of the American
Statistical Association, 86, 328–332.

Harrell, F.E. Jr. (2001), Regression modeling strategies with applications to linear models, logistic regression, and
survival analysis, New York: Springer-Verlag.

Li, K.C. (1991), ”Sliced inverse regression for dimension reduction (with discussion),” Journal of the American
Statistical Association, 86, 316–342.

Li, K.C. (1992), ”On principal Hessian directions for data visualization and dimension reduction: another application
of Stein’s lemma,” Journal of the American Statistical Association, 87, 1025–1039.

Nelson, D., Noorbaloochi S. (2009), ”Dimension reduction summaries for balanced contrasts” Journal of Statistical
Planning and Inference, 139, 617–628.

Noorbaloochi S., Nelson, D. (2008), ”Conditionally specified models and dimension reduction in the exponential
families,” Journal of Multivariate Analysis, 99, 1574–1589.

Rosenbaum, P.R., Rubin, D.B. (1983), ”The central role of the propensity score in observational studies for causal
effects,” Biometrika, 70, 41–55.


